Medium-sized cyclophanes. Part 72. Synthesis and structures of 9-methoxy(1,4)naphthaleno[3.3]metacyclophane-2,11-diones

Takehiko Yamato*, Ryo Okabe, Shinpei Miyamoto and Minoru Miyazaki

Department of Applied Chemistry, Faculty of Science and Engineering, Saga University, Honjo-machi 1, Saga-shi, Saga 840-8502, Japan

Syn- and anti-9-Methoxy(1,4)naphthaleno[3.3]MCP-2,11-diones (4) are obtained by the coupling reaction of 2,6-bis[2-cyano-2-(toluenesulfony)ethyl]anisoles (2) and 1,4-bis(bromomethyl)naphthalene (3) in dimethylformamide (DMF) with an excess of sodium hydride.

Keywords: metacyclophanes, cyclisation, conformation, through-space interaction
[3.3]MPCP (MPCP = metaparacyclophane) was first prepared by Shinmyozu and co-workers ${ }^{2}$ using (p-tolylsulfonyl)methyl isocyanide (TosMIC) as the cyclisation reagent, followed by Wolff-Kishner reduction. The meta-bridged benzene ring of [3.3]MPCP has been shown to undergo conformational flipping ${ }^{2,3}$ with a significantly lower energy barrier than that in [2.2]MPCP (ca $80 \mathrm{~kJ} \mathrm{~mol}^{-1}$). ${ }^{4}$ Recently, we have reported the synthesis of 9 -substituted [3.3]MPCP-2, 11 -diones and conversion to the corresponding [3.3]MPCPs by Wolff-Kishner reduction. ${ }^{5}$ The different orientation for the acetylation was observed depending on the substituent at C (9) position.

On the other hand, we reported the preparation of 2,11-dithia (1,4)naphthaleno[3.3] MCPs (MCP = metacyclophane) and an internal substituent such as Me or OMe group is sufficient to allow the isolation of a discrete syn or anti isomer. ${ }^{6}$ Thus, there is substantial interest that employing a naphthalene ring instead of a benzene ring of the para-bridged ring will provide good information about the $\pi-\pi$-interaction between the two stacking aromatic rings. Furthermore, the conformations of 9substituted [3.3]MCPs having a naphthalene skeleton are so far not known in spite of the formation of two conformers, i.e. syn- and anti-conformers, being possible like 2,11-dithia(1,4)naphthaleno[3.3]MCPs. In this paper, we report on the synthesis and the structures of syn- and anti-9-methoxy $(1,4)$ naphthaleno[3.3]MCP-2,11-diones (4).

Results and discussion

Vögtle reported ${ }^{7}$ the preparation of $\left[3_{n}\right]$ MCP-triones using (p tolylsulfonyl)methyl isocyanide (TosMIC) ${ }^{8}$ as the cyclisation reagent, which was applied in a new cyclisation procedure without phase-transfer conditions. ${ }^{9}$ This strategy can be employed for the preparation of $(1,4)$ naphthaleno[3.3]MCP-2,11-diones containing two aryl rings. In fact, we have selected the stepwise cyclisation of TosMIC adduct $\mathbf{2}$ with 1,4bis(bromomethyl)naphthalene (3) to prepare the desired cyclic diketones 4 as shown in Scheme 1. The starting compound, 1,4-bis(bromomethyl)naphthalene (3) was prepared from 1,4dimethylnaphthalene according to the reported procedure. ${ }^{10}$ The preparations of the 2,6-bis(bromomethyl)anisoles (1a-d)

Scheme 1
have already been described in earlier paper. ${ }^{11}$ TosMIC adducts $\mathbf{2 a}, \mathbf{2 b}$ and $\mathbf{2 d}$ were obtained in $34-53 \%$ yield by the reaction of $\mathbf{1 a}, \mathbf{1 b}$ and $\mathbf{1 d}$ with TosMIC as a mixture of two isomers, i.e. meso and $d l$. However, the attempted separation of these isomers of $\mathbf{2}$ pure failed. The preparation of the TosMIC adduct 2c of 2,6-bis(bromomethyl)-4-tertbutylanisole (1c) has already been described in earlier paper. ${ }^{12}$ syn-9-Methoxy(1,4)naphthaleno[3.3]MCP-2,11-dione (4a) was obtained in 12% yield by the coupling reaction of 2,6-bis[2-cyano-2-(toluenesulfony)ethyl]anisole (2a) and 3 in dimethylformamide (DMF) with an excess of sodium hydride according to the reported procedure. ${ }^{12}$ Similarly, in the case of 2,6-bis[2-cyano-2-(toluenesulfony)ethyl]-4methylanisole (2b) and 4-bromoanisole (2d) syn-isomers (4b) and (4d) were predominantly obtained in 36 and 21%

Table 1 Anti-to-syn Ratios in TosMIC cyclisation of 2 with $\mathbf{3}$

	Substrate R		Product yield/\% ${ }^{\text {a }}$	Isomer distribution/\% ${ }^{\text {b }}$	
				anti	syn
2a	H	4a	(12)	0	100
2b	Me	4b	(36)	0	100
2c	$t \mathrm{Bu}$	4c	(45)	22 (10)	78 (35)
2d	Br	4d	(21)	0	100

${ }^{\text {a }}$ Isolated yields. ${ }^{\text {b }}$ anti-to-syn Ratios determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy at $20^{\circ} \mathrm{C}$.

[^0]yields, respectively. No anti-product was obtained under the conditions used. In contrast, similar reaction of 2,6-bis [2-cyano-2-(toluenesulfony)ethyl]-4-tert-butylanisole (2c) with 3 afforded a mixture of $\operatorname{syn}-(\operatorname{syn}-4 \mathrm{c})$ and anti-9-metho $\mathrm{xy}(1,4)$ naphthaleno[3.3]MCP-2,11-dione (anti-4c) in a ratio of 78: 22 in 45% yield. Thus, depending on the substituents at position 4 on the 2,6-bis[2-cyano-2-(toluenesulfony)ethyl] anisoles 2, different yields of anti-4 and syn-4 were achieved.

The structures of 4 have been elucidated by elemental analyses and spectral data. For instance, the mass spectral data for anti-4c $\left(\mathrm{M}^{+}=400\right)$ strongly supports cyclic dimeric structure. The IR spectrum of anti-4c shows the absorption of the carbonyl stretching vibration around $1688 \mathrm{~cm}^{-1}$. The ${ }^{1} \mathrm{H}$ NMR spectrum (in CDCl_{3}) of anti-4c exhibits two sets of doublets at $\delta 3.16,3.81 \mathrm{ppm}(J=11.0 \mathrm{~Hz})$ and 3.52 , $3.81 \mathrm{ppm}(J=14.0 \mathrm{~Hz})$ for the $\mathrm{ArCH}_{2} \mathrm{COCH}_{2} \mathrm{Ar}$ methylene protons and a singlet for the methoxy protons at an upfield shift $\delta 2.77 \mathrm{ppm}$ from 4-tert-butyl-2,6-dimethylanisole ($\delta 3.83 \mathrm{ppm}$) due to the ring current of the opposing aromatic ring. ${ }^{4}$ The same upfield shift of the inner naphthalene protons $\left(\mathrm{H}_{21}, \mathrm{H}_{22}\right)$ was observed at $\delta_{\mathrm{MCP}}{ }^{21,22} 6.36 \mathrm{ppm}$ in anti- 4 c $\left[\Delta \delta=0.81 \mathrm{ppm}\right.$ from 1,4-dimethylnaphthalene, $\delta_{\mathrm{BMX}^{2,3}}$ 7.17 ppm] due to the ring current effect by the opposing benzene ring. These observations strongly suggest that compound anti-4c adopts the anti-conformation.
In contrast, the methoxy protons of $\operatorname{syn}-\mathbf{4 c}$ are observed at $\delta 3.33 \mathrm{ppm}$. Further, the benzene protons $\left(\mathrm{H}_{5}, \mathrm{H}_{7}\right)$ can clearly be seen to be shielded at $\delta_{\mathrm{MCP}}{ }^{5,7} 6.45 \mathrm{ppm}$ by the adjacent naphthalene ring, a common consequence of face-to-face aryl rings. ${ }^{4}$ Also the tert-butyl proton was observed at higher field, $\delta 0.86 \mathrm{ppm}$ compared to that of the anti-4c at $\delta 1.29 \mathrm{ppm}$ due to the strong shielding effect of the naphthalene ring. These observations strongly suggest that compound syn-4c adopts syn-conformation. Similarly, the assignments of structures for other syn conformers syn-4a, syn-4b and syn-4d were readily apparent from their ${ }^{1} \mathrm{H}$ NMR spectra.

The 9-methoxy analogues are exclusively formed as the syn-conformers except the tert-butyl group. These findings suggest that the through-space interaction between the nonbonding electron pairs of the oxygen atom of the methoxy group and the opposite naphthalene π-electrons of the anticonformer may disfavour the formation of the latter (Fig. 1A). The exclusive formation of syn-conformer might be also governed by $\pi-\pi$-stacking charge-transfer-type interactions ${ }^{13}$ between the substituted benzene ring and naphtahalene ring as shown in Fig. 1B. In the case of the 6-tert-butyl analogue the formation of anti-[3.3]MCP-2,11-dione anti-4c was observed

(A) through-space interaction

(B) $\pi-\pi$ stacking interaction

(C) steric interaction

Fig. 1 Reaction intermediate for the cyclisation to form 9-methoxy(1,4)naphthaleno[3.3]MCP-2, 11-diones (4).
(syn-to-anti ratio; 78: 22). This result might be attributed to the bulkiness of the tert-butyl group which would inhibit the formation of syn-4c (Fig. 1C).

In conclusion, the cyclisation reaction of 2,6-bis[2-cyano-2(toluenesulfony)ethyl]anisoles (2) and 1,4-bis(bromomethyl) naphthalene (3) in DMF with an excess of sodium hydride exclusively afforded syn-(1,4)naphthaleno[3.3]MCP-2,11diones 4. The effect of the bulkiness of the 4 -substituents of 2 such as tert-butyl group on the ratio of syn-to-anti conformers was observed. Further studies on the chemical properties of the two conformers syn- and anti-4 are now in progress.

Experiment

All melting points are uncorrected. ${ }^{1} \mathrm{H}$ NMR spectra were recorded at 300 MHz on a Nippon Denshi JEOL FT-300 NMR spectrometer in deuteriochloroform with $\mathrm{Me}_{4} \mathrm{Si}$ as an internal reference. IR spectra were measured as KBr pellets on a Nippon Denshi JIR-AQ2OM spectrometer. Mass spectra were obtained on a Nippon Denshi JMS-HX110A Ultrahigh Performance Mass Spectrometer at 75 eV using a direct-inlet system. Elemental analyses were performed by Yanaco MT-5.

Materials

2,6-Bis(bromomethyl)anisoles (1a-1d) and 2,6-bis[2-cyano-2-(toluenesulfony)ethyl]-4-tert-butylanisole (2c) were prepared according to the literature. ${ }^{11,12}$

Preparation of the TosMIC adduct 2. Typical procedure
To a mixture of 20% aqueous $\mathrm{NaOH}\left(25 \mathrm{~cm}^{3}\right)$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(30 \mathrm{~cm}^{3}\right)$ was added $n-\mathrm{Bu}_{4} \mathrm{NI}(440 \mathrm{mg}, 1.2 \mathrm{mmol})$ followed by a solution of TosMIC ($4.45 \mathrm{~g}, 25 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(30 \mathrm{~cm}^{3}\right)$. After the reaction mixture was stirred at room temperature for 30 min , a solution of 2,6bis(bromomethyl)anisole (1a) (3.0 g, 8 mmol$)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(30 \mathrm{~cm}^{3}\right)$ was added. The reaction mixture was stirred at room temperature for 2 h , quenched with water $\left(50 \mathrm{~cm}^{3}\right)$, and was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($50 \mathrm{~cm}^{3} \times 3$). It was washed with water $\left(50 \mathrm{~cm}^{3}\right)$, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to leave a residue. To this residue methanol ($50 \mathrm{~cm}^{3}$) was added and left overnight in the refrigerator to give 2,6-bis[2-cyano-2-(toluenesulfony)ethyl]anisole (2a) (1.64 g, 34\%) as pale brown prisms; m.p. $104-106^{\circ} \mathrm{C} ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}: 2136(\mathrm{CN})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right): 2.49(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.05\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.67(2 \mathrm{H}$, dd, $\left.J=2.9,2.8, C H_{2}\right), 3.79(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.75(2 \mathrm{H}, \mathrm{dd}, J=3.1,3.1$, $C H), 7.09(1 \mathrm{H}, \mathrm{d}, J=7.0, \mathrm{Ar}-H), 7.19(1 \mathrm{H}, \mathrm{d}, J=7.0, \mathrm{Ar}-H), 7.24$ ($1 \mathrm{H}, \mathrm{t}, J=6.2, \operatorname{Ar}-H), 7.44(4 \mathrm{H}, \mathrm{d}, J=7.9, \operatorname{Ar}-H), 7.90(4 \mathrm{H}, \mathrm{d}$, $J=8.3, \mathrm{Ar}-H) ; m / z: 522\left(\mathrm{M}^{+}\right)$. Anal. calcd. for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}_{2}$ (522.6): 62.05; H, 5.01; N, 5.36. Found C, 62.08; H, 5.02; N, 5.21.

Compounds 2b and 2d were similarly prepared in 53 and 34% yields as shown in Scheme 1.

2,6-Bis[2-cyano-2-(toluenesulfony)ethyl]-4-methylanisole (2b): obtained as pale brown powder (methanol), m.p. $151-153^{\circ} \mathrm{C}$ (dec.); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}: 2133(\mathrm{CN}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right): 2.27(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.49$ ($6 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), $2.89\left(2 \mathrm{H}, \mathrm{dd}, J=11.7,13.7, \mathrm{CH}_{2}\right), 3.61(2 \mathrm{H}, \mathrm{dd}$, $\left.J=2.9,3.1, C H_{2}\right), 3.79(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.75,4.83(2 \mathrm{H}, \mathrm{dd}$, $J=3.1,3.1, C H), 7.00(2 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-H), 7.43(4 \mathrm{H}, \mathrm{d}, J=7.9, \mathrm{Ar}-H), 7.90$ ($4 \mathrm{H}, \mathrm{d}, J=8.4, \mathrm{Ar}-H) ; m / z: 536\left(\mathrm{M}^{+}\right)$. Anal. calcd. for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{~N}_{2} \mathrm{~S}_{2}$ (536.67): C, 62.67 ; H, 5.26; N, 5.22. Found: C, $62.48 ; \mathrm{H}, 5.24 ; \mathrm{N}$, 5.38 .

2,6-Bis[2-cyano-2-(toluenesulfony)ethyl]-4-bromoanisole(2d) was obtained as pale brown prisms; m.p. $104-106^{\circ} \mathrm{C} ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$: $2132(\mathrm{CN}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right): 2.49,2.50(6 \mathrm{H}$, each s, Me$), 2.89,3.04(2 \mathrm{H}$, each dd, $\left.J=11.2,13.9, \mathrm{CH}_{2}\right), 3.66,3.60,3.67(2 \mathrm{H}$, each dd, $J=2.9$, $\left.13.9, \mathrm{CH}_{2}\right), 3.79,3.83(3 \mathrm{H}$, each s, OMe), 4.73, $4.83(2 \mathrm{H}$, each dd, $J=2.9,11.2, C H), 7.26,7.34$ (each s, $2 \mathrm{H}, \mathrm{Ar}-H), 7.44,7.46(4 \mathrm{H}$, d, $J=8.3, \operatorname{Ar}-H), 7.87,7.93(4 \mathrm{H}, \mathrm{d}, J=8.3, \mathrm{Ar}-H) ; m / z: 600,602$ $\left(\mathrm{M}^{+}\right)$. Anal. calcd. for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{BrN}_{2} \mathrm{O}_{5} \mathrm{~S}_{2}$ (601.5): C, $53.91 ; \mathrm{H}, 4.19$; N , 4.66. Found: C, 53.69; H, 4.20; N, 4.66.

Cyclisation of TosMIC adduct 2c and 1,4-bis(bromomethyl)na phthalene (3): To a suspension of $\mathrm{NaH}(2.1 \mathrm{~g}, 51 \mathrm{mmol})$ in DMF $\left(150 \mathrm{~cm}^{3}\right)$ a solution of $2 \mathrm{c}(4.0 \mathrm{~g}, 6.9 \mathrm{mmol})$ and 1,4-bis(bromomethyl)naphthalene (3) ($2.23 \mathrm{~g}, 6.9 \mathrm{mmol}$) in DMF ($35 \mathrm{~cm}^{3}$) was added dropwise over a period of 6 h . After the suspension was stirred for an additional 5 h at room temperature, it was quenched with ice water ($300 \mathrm{~cm}^{3}$). The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($100 \mathrm{~cm}^{3} \times 3$), washed with water $\left(200 \mathrm{~cm}^{3}\right)$, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to $30 \mathrm{~cm}^{3}$. Concentrated $\mathrm{HCl}\left(15 \mathrm{~cm}^{3}\right)$ was added, and the solution was stirred for 15 min . The organic layer was again extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(100 \mathrm{~cm}^{3} \times 3\right)$, washed with water
(100 $\mathrm{cm}^{3} \times 2$), dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated and condensed under reduced pressure. The residue was chromatographed on silica gel using benzene and benzene- $\mathrm{CHCl}_{3}(1: 1)$ as eluents to give crude syn-4c (1.02 g, 35\%) and anti-4c (290 mg, 10\%) as a colourless solid, respectively. Recrystallisation from hexane afforded syn-4c (830 mg , 30%) and anti- 4 c ($230 \mathrm{mg}, 8 \%$) as a colourless prisms.

Syn-6-tert-butyl-9-methoxy(1,4)naphthaleno[3.3]metacyclophane-2,11-dione (syn-4c): Obtained as prisms (hexane); m.p. 198-201 ${ }^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}: 1699(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right): 0.86(9 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}), 3.33$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $3.12\left(2 \mathrm{H}, \mathrm{d}, J=11.0, \mathrm{CH}_{2}\right), 3.78(2 \mathrm{H}, \mathrm{d}, J=14.0$, $\left.C_{2}\right), 4.04\left(2 \mathrm{H}, \mathrm{d}, J=11.0, C H_{2}\right), 4.30\left(2 \mathrm{H}, \mathrm{d}, J=14.0, C H_{2}\right)$, $6.45\left(2 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-H_{5,7}\right), 7.20\left(2 \mathrm{H}, \mathrm{dd}, J=6.5,3.4, \mathrm{Ar}-H_{16,17}\right), 7.43$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H}_{21,22}\right), 7.58\left(2 \mathrm{H}, \mathrm{dd}, J=6.5,3.4, \mathrm{Ar}-\mathrm{H}_{15,18}\right) ; \mathrm{m} / \mathrm{z}: 400$ $\left(\mathrm{M}^{+}\right)$. Anal. calcd. for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{O}_{2}$ (400.52): C, 80.97; H, 7.05. Found: C, 81.26; H, 7.16.
Anti-6-tert-butyl-9-methoxy $(1,4)$ naphthaleno[3.3]metacyclo-phane-2,11-dione (anti-4c): Obtained as prisms (hexane); m.p. 175$178^{\circ} \mathrm{C} ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}: 1688(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right): 1.29(9 \mathrm{H}, \mathrm{s}$, $t \mathrm{Bu}), 2.77(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.16\left(2 \mathrm{H}, \mathrm{d}, J=11.0, C H_{2}\right), 3.52(2 \mathrm{H}, \mathrm{d}$, $\left.J=14.0, C H_{2}\right), 3.81\left(2 \mathrm{H}, \mathrm{d}, J=11.0, \mathrm{CH}_{2}\right), 4.45(2 \mathrm{H}, \mathrm{d}, J=14.0$, $\left.\mathrm{CH}_{2}\right), 6.36\left(2 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H}_{21,22}\right), 6.88\left(2 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H}_{5,7}\right), 7.57(2 \mathrm{H}, \mathrm{dd}$, $\left.J=6.5,3.4, \mathrm{Ar}-H_{16,17}\right), 8.07\left(2 \mathrm{H}, \mathrm{dd}, J=6.5,3.4, \mathrm{Ar}-H_{15,18}\right)$; $m / z: 400\left(\mathrm{M}^{+}\right)$. Anal. calcd. for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{O}_{2}$ (400.52): C, 80.97; H, 7.05. Found: C, 80.68; H, 6.81.

Compounds syn-4a, syn-4b and syn-4d were similarly prepared in 12, 36 and 21% yields as shown in Table 1.

Syn-9-methoxy(1,4)naphthaleno[3.3]metacyclophane-2,11-dione (syn-4a): Obtained as prisms (hexane); m.p. $250-253^{\circ} \mathrm{C} ; \mathrm{v}_{\max }(\mathrm{KBr}) /$ $\mathrm{cm}^{-1}: 1694(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right): 3.14\left(2 \mathrm{H}, \mathrm{d}, J=11.6, \mathrm{CH}_{2}\right), 3.34$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 3.77\left(2 \mathrm{H}, \mathrm{d}, J=14.5, \mathrm{CH}_{2}\right), 4.06(2 \mathrm{H}, \mathrm{d}, J=11.6$, $\left.\mathrm{CH}_{2}\right), 4.30\left(2 \mathrm{H}, \mathrm{d}, J=14.5, \mathrm{CH}_{2}\right), 5.83\left(1 \mathrm{H}, \mathrm{t}, J=7.7, \mathrm{Ar}-\mathrm{H}_{6}\right), 6.38$ ($2 \mathrm{H}, \mathrm{d}, J=7.7, \mathrm{Ar}-H_{5,7}$) , $7.23\left(2 \mathrm{H}, \mathrm{dd}, J=6.5,3.4, \mathrm{Ar}-H_{15,18}\right), 7.40$ ($2 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H}_{21,22}$), $7.58\left(2 \mathrm{H}, \mathrm{dd}, J=6.5,3.4, \mathrm{Ar}-\mathrm{H}_{16,17}\right) ; \mathrm{m} / \mathrm{z}: 344$ $\left(\mathrm{M}^{+}\right)$. Anal. calcd. for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{O}_{3}$ (344.41): C, $80.21 ; \mathrm{H}, 5.85$. Found: C, 80.37; H, 5.76.
Syn-9-methoxy-6-methyl(1,4)naphthaleno[3.3]metacyclophane-2,11-dione (syn-4b): Obtained as prisms (hexane); m.p. 245-246 ${ }^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}: 1698(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right): 1.52(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.08$ $\left(2 \mathrm{H}, \mathrm{d}, J=11.7, \mathrm{CH}_{2}\right), 3.32(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.75(2 \mathrm{H}, \mathrm{d}, J=14.5$, $\left.\mathrm{CH}_{2}\right), 3.99\left(2 \mathrm{H}, \mathrm{d}, J=11.6, \mathrm{CH}_{2}\right), 4.28\left(2 \mathrm{H}, \mathrm{d}, J=14.5, \mathrm{CH}_{2}\right)$, $6.15\left(2 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-H_{5,7}\right), 7.27\left(2 \mathrm{H}, \mathrm{dd}, J=6.5,3.4, \mathrm{Ar}-H_{15,18}\right), 7.40$ ($2 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-H_{21,22}$), $7.56\left(2 \mathrm{H}, \mathrm{dd}, J=6.5,3.4, \mathrm{Ar}-H_{16,17}\right) ; m / z: 458$
$\left(\mathrm{M}^{+}\right)$. Anal. calcd. for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{O}_{3}$ (358.44): C, 80.42; H, 6.19. Found: C, 80.33; H, 6.17.
Syn-6-bromo-9-methoxy $(1,4)$ naphthaleno[3.3]metacyclophane-2,11-dione (syn-4d): Obtained as prisms (hexane); m.p. 289-290º ; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}: 1699(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right): 3.07(2 \mathrm{H}, \mathrm{d}, J=11.7$, $\left.\mathrm{CH}_{2}\right), 3.33(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.78\left(2 \mathrm{H}, \mathrm{d}, J=14.5, \mathrm{CH}_{2}\right), 3.99(2 \mathrm{H}, \mathrm{d}$, $\left.J=11.7, \mathrm{CH}_{2}\right), 4.33\left(2 \mathrm{H}, \mathrm{d}, J=14.5, \mathrm{CH}_{2}\right), 6.47\left(2 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H}_{5,7}\right)$, $7.39\left(2 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-H_{15,18}\right), 7.40\left(4 \mathrm{H}, \mathrm{dd}, J=6.5,3.4, \mathrm{Ar}-H_{21,22}\right), 7.56$ ($2 \mathrm{H}, \mathrm{dd}, J=6.5,3.4, \mathrm{Ar}-H_{16,17}$); $m / z: 422,424\left(\mathrm{M}^{+}\right)$. Anal. calcd. for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{Br}(423.31)$: C, $65.26 ; \mathrm{H}, 4.52$. Found: C, $65.24 ; \mathrm{H}, 4.51$.

Received 15 February 2006; accepted 12 June 2006
Paper 06/3793

References

1 Medium-sized Cyclophanes. part 71: T. Yamato, T. Saisyo, T. Hironaka and S. Miyamoto, J. Chem. Res., 2006, 558.
2 T. Shinmyozu, T. Inazu and T. Yoshino, Mem. Fac. Sci., Kyushu Univ., 1985, Ser. C 15, 79.
3 L. Ernst, Progress in Nuclear Magnetic Resonance Spectroscopy, 2000, 37, 47.
4 (a) Cyclophanes (P.M. Keehn and S.M. Rosenfield (eds)), Academic Press: New York, vol. 1\&2, 1983; (b) F. Vögtle, Cyclophane-Chemistry, Wiley, Chichester, 1993
5 T. Yamato, K. Noda and K. Tanaka, J. Chem. Res. (S), 2002, 63.
6 T. Yamato, K. Noda, K. Tokuhisa and M. Tashiro, J. Chem. Res. (S), 1994, 210; (M), 1152.
7 (a) J. Breitenbach and F. Vögtle, Synthesis, 1992, 41; (b) J. Breitenbach, F. Ott and F. Vögtle, Angew. Chem., 1992, 104, 360; Angew. Chem. Int. Ed. Engl., 1992, 31, 307; (c) F. Ott, J. Breitenbach, M. Nieger and F. Vögtle, Chem. Ber., 1993, 126, 97.

8 O. Possel and A.M. van Leusen, Tetrahedron Lett., 1977, 4229; (b) D.van Leusen, A.M. van Leusen, Tetrahedron Lett., 1977, 4233.
9 (a) K. Kobiro, M. Takashi, N. Nishikawa, K. Kikuchi, Y. Tobe and Y. Odaira, Tetrahedron Lett., 1987, 28, 3825; (b) K. Sako, T. Meno, H. Takemura, T. Shinmyozu and T. Inazu, Chem. Ber., 1990, 123, 630; (c) K. Sako, T. Shinmyozu, H. Takemura, M. Suenaga and T. Inazu, J. Org. Chem., 1992, 57, 6536.

10 M.W. Haenel, Chem. Ber., 1982, 115, 1425.
11 T. Yamato, T. Furukawa, K. Tanaka, T. Ishi-i and M. Tashiro, Can. J. Chem., 2003, 81, 244.

12 T. Yamato, L.K. Doamekpor, K. Koizumi, K. Kishi, M. Haraguchi and M. Tashiro, Liebigs Ann., 1995, 1259.

13 M. Nishio and M. Horita, Tetrahedron, 1989, 45, 7201.

[^0]: * Correspondent. E-mail: yamatot@cc.saga-u.ac.jp

